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ABSTRACT 

Associated with certain oriented Jordan arcs is a region which is called the side 
of the arc. Circles centered on the arc and passing through one of the end 
points of the arc have an envelope which permits one to find analytically the 
shape of the side of the arc. A condition, stated geometrically, is imposed on 
the arcs considered, to insure that the circles have an envelope. An analytic 
condition is then imposed (Theorem 3) to insure an envelope. As an example 
a parabola is given. 

In this note we shall be concerned with finding the shape of the left and right 

neighborhoods of  a Jordan arc L with a prescribed direction, as described in 
Muskhelishvili [-1]. 

We define the left neighborhood (or left side) S + of an arc L with end points 

La and Lb as follows: a point  p is in S + if  there exists a point  t o on L a n d  an 
open disc Do centered at to for which Do - Lis  the union of two disjoint open 

sets, one on the left, D +, and one on the right, Do,  as we traverse L in  the pre- 

scribed direction, and p is in D~-. The right neighborhood S -  is defined in an 

obvious way. It  will be our aim to find the shape of S ÷. 

In this note we shall impose a further restriction on L, namely:  (C1) every 

circle centered on L and passing through La or Lb is divided into at most  two 
disjoint sets by L. Note that  the arc y = 2 sin nx, 0 < x < 1 does not satisfy (C1) 
since the circle centered on L which is tangent to the line x = 1 and passes 
through (0,0) is cut by L in four points. 

We now define the set E ÷. A point p is in E + if there exists a point tl and an 
open disc D~ centered at t~, whose closure passes through L~ or Lb, D~ - L  is 
the union of  two disjoint open sets D~" and D~-, for which p is in D~. 

THEOREM 1. S + = E+. 

Proof. S + ~ E + clearly. To see that  E + _~ S + let p be in S + and let the disc 

containing p, centered at to on L, and divided by L into two disjoint sets, be 

denoted by D 0. Let the circular boundary of  Do be denoted by Bo. 

We shall show as a preliminary result that  Do cannot contain either L~ cr  Lb. 

To see this, assume that  Do contained L~ or Lb. Then since Do is divided into 

two disjoint sets by the non-intersecting continuous arc L, L must intersect Bo 

in at least two points b~ and b2. Without loss of  generality, assume bl lies between 
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to and Lo on L. Since La is an interior point of Do, there is a circle about to, smaller 
than Bo, which contains La in its interior, and bl and b 2 in its exterior. Such a 
circle is cut by L in at least three distinct points and thus (Cl) is violated and 
we see that Do cannot contain La or L~. 

If B 0 contains La or Lb we are finished, since then p is in E +. On the other 
hand, if Bo contains neither L a nor Lb, we know from the above paragraph that 
Do UBo contains neither La nor Lb. Increase the size of Do (maintaining its center 
at to) until Bo cuts La or Lb or both. Then D o becomes a D1 with D + _ D + and 
thus p is in E +. Thus E + =  S +. 

We shall now introduce a second condition: (C2) Let L be a Jordan arc with 
end points Lo and L b. Given any point t on L there exists a circle yt(e) centered 
at t and of radius s > 0 such that the extended line joining any point of Linterior 
to ?t(s) and passing through t does not contain Lo or L~. Note that the interval 
[0,1] does not satisfy (C2). 

DEFINITION. The class of arcs that satisfy (C1) and (C2) and which have a 
continuously turning tangent will be denoted by .~. 

THEOP~M 2. I f  L~.~ ,  the circles centered on L and passing through La(Lb) 
have an envelope. 

Proof. This follows since any two such circles, if sufficiently close together, 
intersect in one other point than Lo since if not they would be tangent and their 
centers would lie on a line through La. But this is impossible since Le.~.  A similar 
argument holds for circles passing through Lb. 

The condition (C2) is defined geometrically. We shall now be concerned with 
finding a subset of LP that is characterized analytically. 

LEMMA. Let g(s) be a continuous map from [a*, t~**] to L* and let g(So):/= 0 
for  tr* < So < a**. Then there is a unit vector A and a circle ?so(e*) about g(so) 
of radius s* > 0 such that g(s) is not perpendicular to A for  g(s) in ~so(e*). 

Proof. By contradiction. Let e. o 0 as n --, ~ .  Then if A is an arbitrary, but 
fixed unit vector, there is an s. with g(s.) in yso(S.) such that g(s.) is perpendicular 
to A and thus g(s.). A = O. Since the 5. ~ 0 it follows that g(s.) --, g(So) and thus 
g(s , ) .A ~ g(So)'A. But for each n, g(s . ) 'A = 0 and thus g(So)'A = O. But A 
was arbitrary and l a I= 1. Thus g(So)= 0 which is a contradiction. 

THEOREM 3. Let the Jordan arc L: y = y(s), 0 <_ s <_ tr, s = arc length of L, 

satisfy (C1). I f  for every so,O < So < tr, there exists a positive integer n(So) > 2 
such that y(s) has n continuous derivatives in a neighborhood of s =so, 
y'(So):~0, y"(so) . . . . .  gt"-x)(So) = 0 but ytn)(So) =/= 0, then L belongs to .Z. 

RE~A~tK. This theorem says geometrically that if L has some "curviness" 
at each point then L satisfies (C2). 
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Proof. We shall first show there is a circle Yso(e) centered at Yo =- y(so) of 
such small radius 8 > 0 that no radius of  y~o(~) intersects L within Tso(e) in more 
than n points. Since y(~)(s) is continuous at s = So there is a 6, 0 <  5 <  

<min{so,  a -So}  such that i f  i s - S o [  < 6, then 

ly(')(s) - y "'l < I/on)l, where ") = y(')(So} 

since y~o ~) :/: 0. Let 

~** -- rain {ly(s o + 6 ) -  Yol, l Y o -  y ( s o -  6 ) l } .  

Apply the lemma to g(s) = y{")(s) and get an e* and an A, I A I -- 1 such that 

y°)(s) is not perpendicular to A for y(")(s) in 7~o(e*). Let e -- min{8*,e**}. 
Let 6 '  > 0 be such that y(s o - 6*) is the first point of  intersection of  L with 

~,~o(e) as we travel along L from Yo to La and 6** > 0 bc such that y(s o + 6**) 
is the first point  of intersection of  Lwith T~o(e) as we travel along L from Yo to Lb. 
Without loss of  generality, we may assume that yC")(s) is defined and continuous 

on Io = (So - 6", So + 6**) c [0, ~] .  
Let y(s*) = y* be any point  of  L within 7so(e). Then 

Z ( s )  = y *  - Yo (s - So) + Yo, So < s < 
s *  - S 0 

is the straight line from Yo through y*. We want to show that Z(s) and y(s) have 
at most n intersections within ~,o(~) i.e. there are at most n points st in Io for 
which y(s~)= Z(si). I f  there were more, then F ( s ) = - Z ( s )  + y(s) would have 
at least n + 1 zeros i.e. F(s~) = O, i = 1,2 .... , n + 1, s t in I o. Then the real-valued 
unction F(s).A would have the same n + 1 zeros. By repeated use of  Rolle's 

heorem F{~)(~) • A = 0 for some ~ in Io(so). But since n >_- 2 

F(~)(~) • A = y(n)(s) .A = 0 .  

But[A[ = 1 and A is not perpendicular to y(")(s) for s in lo. Thus 

y~")(~) = o. 

But this is a contradiction since lyt"}(s) - y~o")l < [yCo"; I for s in Io, since then 
y(s) is in 7~o(e).Thus in 7~o(e), L intersects each radius of 7so(e) in at most n points. 
In particular, the extended radius ro or rb of 7~o(e) that passcs through Lo or Lb 
meets Lin at most n points inside 7~o(~). 

If r~ or r b meets L inside 7~o(e), put a conccntric circle centered at Yo that passes 
through that point of intersection of L with r~ or r b which is closest to Yo. Let 

the circle be 7~o(~). If ro and rb do not mcct L, let ~o(~) = 7so(e). Then if t is any 

point of Lintcrior to 7~o(~), the linc through Yo and t does not contain L~ or Lb, 
and thus (C2) is satisfied. Since Yo was arbitrary, L b~longs to .T and the theorem 
is prowd. 
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To find S ÷ for Lin  Lc we take advantage of Theorem 2 and find the envelope 
E + of the circles passing through La, centered on L whose sides are on the left 
of L. We find then a similar envelope E~ for the circles passing through Lb. Let 
C be the circle centered on L and passing through La and Lb. Let L ÷ be the 
arc from La along E + or C to E + n C then along C to C n E + then along E~ 
or C to Lb, where the proper choices are the ones that give the maximum region 
between L and L ÷. This maximum region is E +, by definition, and as seen in 
Theorem 1, E ÷ =  S +, since L belongs to ~a. Note that L + may contain just 
part of C. 

Let L be given in the ~, fl plane by fl = rn(~). There is no loss of generality in 
assuming Lo is at the origin and m(0)=0. Then the circles C(ct) centered on L 
and passing through La are given by: 

1. f ( x , y ,  ot) = ( x  - ~t)2 + [y - m ( t ~ ) ]  2 - c t2  - r r l 2 ( t x )  = 0 

where ( x , y )  are generic points of C(~). To find the envelope, we eliminate ~t 
between 1. and 

2. f~ (x ,  y ,  00 = x + m'(ot)y  = O. 

The circles through Lb = (Xo, Yo) are given by: 

3. g ( x ,  y ,  ~) = (x  - ~)2 + [y _ re(c0] 2 _ (x 0 _ 0~)2 - -  [ Y 0  - -  m ( ~ ) ]  2 = 0 

and the envelope of these circles is given by eliminating ~ between 3. and 

4. g~,(x, y ,  ~) = (x  - Xo) + m ' ( e )  ( y  - Yo) = 0 

EXAMPLE. Let L be the arc of the parabola fl = ct2 between (0,0) and (1,1) 
with the direction from Lo = (1,1) to Lb = (0,0) In this case we get a quadratic 
equation for E~ that can be solved to give: 

X 

and E~ is given by: 

X = 

1 -- v / 2 ( i -  y)6 (2y -I- 3)-  for ½ < y < 1, 
2y -- 1 

J - 2 y 3  for -- ½ < y < 0 
2 y + l  = " 
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